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1 The circle constant
The Tau Manifesto is dedicated to one of the most important num-
bers in mathematics, perhaps the most important: the circle constant
relating the circumference of a circle to its linear dimension. For mil-
lennia, the circle has been considered the most perfect of shapes, and
the circle constant captures the geometry of the circle in a single num-
ber. Of course, the traditional choice for the circle constant is π (pi)—
but, as mathematician Bob Palais notes in his delightful article “π Is
Wrong!”,1 π is wrong. It’s time to set things right.

1.1 An immodest proposal
We begin repairing the damage wrought by π by first understanding
the notorious number itself. The traditional definition for the circle
constant sets π equal to the ratio of a circle’s circumference (length)
to its diameter (width):2

π ≡ C

D
= 3.14159265 . . . (1)

The number π has many remarkable properties—among other things,
it is irrational and indeed transcendental—and its presence in mathe-
matical formulas is widespread.

It should be obvious that π is not “wrong” in the sense of being
factually incorrect; the number π is perfectly well-defined, and it has
all the properties normally ascribed to it by mathematicians. When we
say that “π is wrong”, we mean that π is a confusing and unnatural
choice for the circle constant. In particular, a circle is defined as the
set of points a fixed distance, the radius, from a given point, the center
(Figure 1). While there are infinitely many shapes with constant width
(Figure 2),3 there is only one shape with constant radius. This suggests

1Palais, Robert. “π Is Wrong!”, The Mathematical Intelligencer, Volume 23,
Number 3, 2001, pp. 7–8. Many of the arguments in The Tau Manifesto are based
on or are inspired by “π Is Wrong!”. It is available online at https://www.math.utah.-
edu/~palais/pi.html.

2The symbol ≡ means “is defined as”.
3Image retrieved from Wikimedia on 2019-03-12. Copyright © 2016 by Ruleroll
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Figure 1: Anatomy of a circle.
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Figure 2: One of the infinitely many non-circular shapes with constant
width.

that a more natural definition for the circle constant might use r in
place of D:

circle constant ≡ C

r
. (2)

Because the diameter of a circle is twice its radius, this number is
numerically equal to 2π. Like π, it is transcendental and hence irra-
tional, and (as we’ll see in Section 2) its use inmathematics is similarly
widespread.

In “π Is Wrong!”, Bob Palais argues persuasively in favor of the
second of these two definitions for the circle constant, and in my view
he deserves principal credit for identifying this issue and bringing it
to a broad audience. He calls the true circle constant “one turn”, and
he also introduces a new symbol to represent it (Figure 3). As we’ll
see, the description is prescient, but unfortunately the symbol is rather
strange, and (as discussed in Section 4) it seems unlikely to gain wide
adoption. (Update: This indeed proved to be the case, and Palais him-
self has since become a strong supporter of the arguments in this man-
and used unaltered under the terms of the Creative Commons Attribution-Share Alike
4.0 International license.
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Figure 3: The strange symbol for the circle constant from “π Is
Wrong!”.

ifesto.)
The Tau Manifesto is based on the proposition that the proper re-

sponse to “π is wrong” is “No, really.” And the true circle constant
deserves a proper name. As you may have guessed by now, The Tau
Manifesto proposes that this name should be the Greek letter τ (tau):

τ ≡ C

r
= 6.283185307179586 . . . (3)

Throughout the rest of this manifesto, we will see that the number τ
is the correct choice, and we will show through usage (Section 2 and
Section 3) and by direct argumentation (Section 4) that the letter τ is
a natural choice as well.

1.2 A powerful enemy
Before proceeding with the demonstration that τ is the natural choice
for the circle constant, let us first acknowledge what we are up
against—for there is a powerful conspiracy, centuries old, determined
to propagate pro-π propaganda. Entire books are written extolling the
virtues of π. (I mean, books!) And irrational devotion to π has spread
even to the highest levels of geekdom; for example, on “Pi Day” 2010
Google changed its logo to honor π (Figure 4).

Meanwhile, some people memorize dozens, hundreds, even thou-
sands of digits of this mystical number. What kind of sad sack mem-
orizes even 40 digits of π (Figure 5)?4

4The video in Figure 5 (available at https://vimeo.com/12914981) is an excerpt
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Figure 4: The Google logo on March 14 (3/14), 2010 (“Pi Day”).

Figure 5: Matt Groening, incorrectly reciting π, says “Prove me
wrong!”—so I do.
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Truly, proponents of τ face a mighty opponent. And yet, we have
a powerful ally—for the truth is on our side.

2 The number tau
We saw in Section 1.1 that the number τ can also be written as 2π.
As noted in “π Is Wrong!”, it is therefore of great interest to discover
that the combination 2π occurs with astonishing frequency throughout
mathematics. For example, consider integrals over all space in polar
coordinates: ∫ 2π

0

∫ ∞

0
f(r, θ) r dr dθ.

The upper limit of the θ integration is always 2π. The same factor
appears in the definition of the Gaussian (normal) distribution,

1√
2πσ

e−
(x−µ)2

2σ2 ,

and again in the Fourier transform,

f(x) =

∫ ∞

−∞
F (k) e2πikx dk

F (k) =

∫ ∞

−∞
f(x) e−2πikx dx.

It recurs in Cauchy’s integral formula,

f(a) =
1

2πi

∮
γ

f(z)

z − a
dz,

in the nth roots of unity,

zn = 1 ⇒ z = e2πi/n,

from a lecture given by Dr. Sarah Greenwald, a professor of mathematics at Ap-
palachian State University. Dr. Greenwald uses math references from The Simpsons
and Futurama to engage her students’ interest and to help them get over their math
anxiety. She is also the maintainer of the FuturamaMath Page.
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and in the values of the Riemann zeta function for positive even inte-
gers:5

ζ(2n) =

∞∑
k=1

1

k2n

=
|B2n|
2(2n)!

(2π)2n, n = 1, 2, 3, . . .

These formulas are not cherry-picked—crack open your favorite phy-
sics or mathematics text and try it yourself. There are many more
examples, and the conclusion is clear: there is something special about
2π.

To get to the bottom of this mystery, we must return to first princi-
ples by considering the nature of circles, and especially the nature of
angles. Although it’s likely that much of this material will be familiar,
it pays to revisit it, for this is where the true understanding of τ begins.

2.1 Circles and angles
There is an intimate relationship between circles and angles, as shown
in Figure 6. Since the concentric circles in Figure 6 have different
radii, the lines in the figure cut off different lengths of arc (or arc
lengths), but the angle θ (theta) is the same in each case. In other
words, the size of the angle does not depend on the radius of the circle
used to define the arc. The principal task of angle measurement is to
create a system that captures this radius-invariance.

Perhaps the most elementary angle system is degrees, which
breaks a circle into 360 equal parts. One result of this system is the
set of special angles (familiar to students of trigonometry) shown in
Figure 7.

A more fundamental system of angle measure involves a direct
comparison of the arc length s with the radius r. Although the lengths
in Figure 6 differ, the arc length grows in proportion to the radius, so
the ratio of the arc length to the radius is the same in each case:

s ∝ r ⇒ s1
r1

=
s2
r2
.

5Here Bn is the nth Bernoulli number.
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s1

s2

r1

r2

θ

Figure 6: An angle θ with two concentric circles.
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Figure 7: Some special angles, in degrees.
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This suggests the following definition of radian angle measure:

θ ≡ s

r
. (4)

This definition has the required property of radius-invariance, and
since both s and r have units of length, radians are dimensionless by
construction. The use of radian angle measure leads to succinct and
elegant formulas throughout mathematics; for example, the usual for-
mula for the derivative of sin θ is true only when θ is expressed in
radians:

d

dθ
sin θ = cos θ. (only in radians)

Naturally, the special angles in Figure 7 can be expressed in radians,
andwhen you took high-school trigonometry you probablymemorized
the special values shown in Figure 8. (I call this system of measure
π-radians to emphasize that they are written in terms of π.)

Now, a moment’s reflection shows that the so-called “special” an-
gles are just particularly simple rational fractions of a full circle, as
shown in Figure 9. This suggests revisiting Eq. (4), rewriting the arc
length s in terms of the fraction f of the full circumference C, i.e.,
s = fC:

θ =
s

r
=
fC

r
= f

(
C

r

)
≡ fτ. (5)

Notice how naturally τ falls out of this analysis. If you are a believer
in π, I fear that the resulting diagram of special angles (Figure 10) will
shake your faith to its very core.

Although there are many other arguments in τ ’s favor, Figure 10
may be the most striking. We also see from Figure 10 the genius of
Bob Palais’ identification of the circle constant as “one turn”: τ is
the radian angle measure for one turn of a circle. Moreover, note that
with τ there is nothing to memorize: a twelfth of a turn is τ/12, an
eighth of a turn is τ/8, and so on. Using τ gives us the best of both
worlds by combining conceptual clarity with all the concrete benefits
of radians; the abstract meaning of, say, τ/12 is obvious, but it is also
just a number:

a twelfth of a turn =
τ

12
≈ 6.283185

12
= 0.5235988.
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Figure 8: Some special angles, in π-radians.
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Figure 9: The “special” angles as fractions of a full circle.
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0, τ

Figure 10: Some special angles, in radians.
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Finally, by comparing Figure 8 with Figure 10, we see where those
pesky factors of 2π come from: one turn of a circle is 1τ , but 2π.
Numerically they are equal, but conceptually they are quite distinct.

2.1.1 The ramifications

The unnecessary factors of 2 arising from the use of π are annoying
enough by themselves, but far more serious is their tendency to cancel
when divided by even numbers. The absurd results, such as a half π
for a quarter turn, obscure the underlying relationship between angle
measure and the circle constant. To those whomaintain that it “doesn’t
matter” whether we use π or τ when teaching trigonometry, I simply
ask you to view Figure 8, Figure 9, and Figure 10 through the eyes of
a child. You will see that, from the perspective of a beginner, using π
instead of τ is a pedagogical disaster.

2.2 The circle functions
Although radian angle measure provides some of the most compelling
arguments for the true circle constant, it’s worth comparing the virtues
of π and τ in some other contexts as well. We begin by considering the
important elementary functions sin θ and cos θ. Known as the “circle
functions” because they give the coordinates of a point on the unit
circle (i.e., a circle with radius 1), sine and cosine are the fundamental
functions of trigonometry (Figure 11).

Let’s examine the graphs of the circle functions to better under-
stand their behavior.6 You’ll notice from Figure 12 and Figure 13 that
both functions are periodic with period T . As shown in Figure 12,
the sine function sin θ starts at zero, reaches a maximum at a quar-
ter period, passes through zero at a half period, reaches a minimum
at three-quarters of a period, and returns to zero after one full period.
Meanwhile, the cosine function cos θ starts at a maximum, has a mini-
mum at a half period, and passes through zero at one-quarter and three-
quarters of a period (Figure 13). For reference, both figures show the
value of θ (in radians) at each special point.

6These graphs were produced with the help of Wolfram|Alpha.
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θ

(cos θ, sin θ)

Figure 11: The circle functions are coordinates on the unit circle.
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2 T

Figure 12: Important points for sin θ in terms of the period T .
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cos θ

Figure 13: Important points for cos θ in terms of the period T .
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Of course, since sine and cosine both go through one full cycle
during one turn of the circle, we have T = τ ; i.e., the circle functions
have periods equal to the circle constant. As a result, the “special”
values of θ are utterly natural: a quarter-period is τ/4, a half-period is
τ/2, etc. In fact, when making Figure 12, at one point I found myself
wondering about the numerical value of θ for the zero of the sine func-
tion. Since the zero occurs after half a period, and since τ ≈ 6.28, a
quick mental calculation led to the following result:

θzero =
τ

2
≈ 3.14.

That’s right: I was astonished to discover that I had already forgotten
that τ/2 is sometimes called “π”. Perhaps this even happened to you
just now. Welcome to my world.

2.3 Euler’s identity
I would be remiss in this manifesto not to address Euler’s identity,
sometimes called “the most beautiful equation in mathematics”. This
identity involves complex exponentiation, which is deeply connected
both to the circle functions and to the geometry of the circle itself.

Depending on the exact route chosen, the following equation can
either be proved as a theorem or taken as a definition; either way, it is
quite remarkable:

eiθ = cos θ + i sin θ. Euler’s formula (6)

Known as Euler’s formula (after Leonhard Euler), this equation relates
an exponential with imaginary argument to the circle functions sine
and cosine and to the imaginary unit i. Although justifying Euler’s
formula is beyond the scope of this manifesto, its provenance is above
suspicion, and its importance is beyond dispute.

Evaluating Eq. (6) at θ = τ yields

eiτ = cos τ + i sin τ = 1 + 0i, (7)

which simplifies to Euler’s identity:7

eiτ = 1. Euler’s identity (τ version) (8)
7Here we’re implicitly defining Euler’s identity to be the complex exponential
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In words, Eq. (8) makes the following fundamental observation:

The complex exponential of the circle constant is unity.

Geometrically, multiplying by eiθ corresponds to rotating a com-
plex number by an angle θ in the complex plane, which suggests a
second interpretation of Euler’s identity:

A rotation by one turn is 1.

Since the number 1 is the multiplicative identity, the geometric mean-
ing of eiτ = 1 is that rotating a point in the complex plane by one turn
simply returns it to its original position.

As in the case of radian angle measure, we see how natural the
association is between τ and one turn of a circle. Indeed, the identifi-
cation of τ with “one turn” makes Euler’s identity sound almost like a
tautology.

2.3.1 Not the most beautiful equation

Of course, the traditional form of Euler’s identity is written in terms
of π instead of τ . To derive it, we start by evaluating Euler’s formula
at θ = π, which yields

eiπ = cosπ + i sinπ = −1 + 0i (9)

and simplifes to

eiπ = −1. Euler’s identity (π version) (10)

But that minus sign is so ugly that Eq. (10) is almost always rearranged
immediately, giving the following “beautiful” equation:

eiπ + 1 = 0. (rearranged) (11)
of the circle constant, rather than defining it to be the complex exponential of any
particular number. If we choose τ as the circle constant, we obtain the identity shown.
As we’ll see momentarily, this is not the traditional form of the identity, which of
course involves π, but the version with τ is the most mathematically meaningful
statement of the identity, so I believe it deserves the name.
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At this point, the expositor usually makes some grandiose but purely
numerological statement about how Eq. (11) relates 0, 1, i, e, and π—
sometimes called the “five most important numbers in mathematics”.

In this context, it’s remarkable how many people complain that
Eq. (8) relates only four of those five numbers. Fine:

eiτ = 1 + 0. (12)

Indeed, we saw in Eq. (7) that there is actually a 0i already included
(from i sin τ ):

eiτ = 1 + 0i. (13)
Eq. (13), without rearrangement, actually does relate the so-called
“five most important numbers in mathematics”: 0, 1, i, e, and τ .

2.3.2 Eulerian identities

Since you can add zero anywhere in any equation, the introduction of 0
in Eq. (12) is a somewhat tongue-in-cheek counterpoint to eiπ+1 = 0,
but the identity eiπ = −1 does have a more serious point to make.
Let’s see what happens when we rewrite it in terms of τ :

eiτ/2 = −1.

Geometrically, this says that a rotation by half a turn is the same as
multiplying by −1. And indeed this is the case: under a rotation of
τ/2 radians, the complex number z = a+ ib gets mapped to−a− ib,
which is in fact just −1 · z.

Written in terms of τ , we see that the “original” form of Euler’s
identity (Eq. (10)) has a transparent geometric meaning that it lacks
when written in terms of π. (Of course, eiπ = −1 can be interpreted
as a rotation by π radians, but the near-universal rearrangement to form
eiπ+1 = 0 shows how using π distracts from the identity’s natural ge-
ometric meaning.) The quarter-angle identities have similar geometric
interpretations: evaluating Eq. (6) at τ/4 gives eiτ/4 = i, which says
that a quarter turn in the complex plane is the same as multiplication
by i; similarly, ei·(3τ/4) = −i says that three-quarters of a turn is the
same as multiplication by−i. A summary of these results, which we’ll
call Eulerian identities, appears in Table 1.
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Rotation angle Eulerian identity
0 ei·0 = 1

τ/4 eiτ/4 = i

τ/2 eiτ/2 = −1

3τ/4 ei·(3τ/4) = −i
τ eiτ = 1

Table 1: Eulerian identities for half, quarter, and full rotations.

We can take this analysis a step further by noting that, for any
angle θ, eiθ can be interpreted as a point lying on the unit circle in
the complex plane. Since the complex plane identifies the horizontal
axis with the real part of the number and the vertical axis with the
imaginary part, Euler’s formula tells us that eiθ corresponds to the
coordinates (cos θ, sin θ). Plugging the values of the “special” angles
from Figure 10 into Eq. (6) then gives the points shown in Table 2,
and plotting these points in the complex plane yields Figure 14. A
comparison of Figure 14 with Figure 10 quickly dispels any doubts
about which choice of circle constant better reveals the relationship
between Euler’s formula and the geometry of the circle.

3 Circular area: the coup de grâce
If you arrived here as a π believer, you must by now be questioning
your faith. τ is so natural, its meaning so transparent—is there no
example where π shines through in all its radiant glory? A memory
stirs—yes, there is such a formula—it is the formula for circular area!
Behold:

A = 1
4πD

2.

No, wait. The area formula is always written in terms of the radius,
as follows:

A = πr2.

We see here π, unadorned, in one of the most important equations in
mathematics—a formula first proved by Archimedes himself. Order
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Polar form Rectangular form Coordinates
eiθ cos θ + i sin θ (cos θ, sin θ)
ei·0 1 (1, 0)

eiτ/12
√
3
2 + 1

2 i (
√
3
2 ,

1
2 )

eiτ/8 1√
2
+ 1√

2
i ( 1√

2
, 1√

2
)

eiτ/6 1
2 +

√
3
2 i ( 12 ,

√
3
2 )

eiτ/4 i (0, 1)

eiτ/3 − 1
2 +

√
3
2 i (− 1

2 ,
√
3
2 )

eiτ/2 −1 (−1, 0)

ei·(3τ/4) −i (0,−1)

eiτ 1 (1, 0)

Table 2: Complex exponentials of the special angles from Figure 10.

ei·0, eiτeiτ/2

ei·(3τ/4)

eiτ/4

eiτ/3 eiτ/6

eiτ/8

eiτ/12

Figure 14: Complex exponentials of some special angles.
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is restored! And yet, the name of this section sounds ominous… If this
equation is π’s crowning glory, how can it also be the coup de grâce?

3.1 Quadratic forms
Let us examine this putative paragon of π, A = πr2. We notice that it
involves the radius raised to the second power. This makes it a simple
quadratic form. Such forms arise in many contexts; as a physicist, my
favorite examples come from the elementary physics curriculum. We
will now consider several in turn.

3.1.1 Falling in a uniform gravitational field

Galileo Galilei found that the velocity of an object falling in a uniform
gravitational field is proportional to the time fallen:

v ∝ t.

The constant of proportionality is the gravitational acceleration g:

v = gt.

Since velocity is the derivative of position, we can calculate the dis-
tance fallen by integration:8

y =

∫
v dt =

∫ t

0
gt dt = 1

2gt
2.

3.1.2 Potential energy in a linear spring

Robert Hooke found that the external force required to stretch a spring
is proportional to the distance stretched:

F ∝ x.

8Technically, all the integrals should be definite, and the variable of integration
should be different from the upper limit (as in

∫ t

0
gt′ dt′, read as “the integral from

zero to tee of gee tee prime dee tee prime”). These minor abuses of notation are
common in physics and other less formal mathematical contexts such as we are con-
sidering here.
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The constant of proportionality is the spring constant k:9

F = kx.

The potential energy in the spring is then equal to the work done by
the external force:

U =

∫
F dx =

∫ x

0
kx dx = 1

2kx
2.

3.1.3 Energy of motion

Isaac Newton found that the force on an object is proportional to its
acceleration:

F ∝ a.

The constant of proportionality is the massm:

F = ma.

The energy of motion, or kinetic energy, is equal to the total work done
in accelerating the mass to velocity v:

K =

∫
F dx =

∫
madx =

∫
m
dv

dt
dx

=

∫
m
dx

dt
dv

=

∫ v

0
mv dv

= 1
2mv

2.

3.2 A sense of foreboding
Having seen several examples of simple quadratic forms in physics,
you may by now have a sense of foreboding as we return to the geom-
etry of the circle. This feeling is justified.

9You may have seen this written as F = −kx. In this case, F refers to the force
exerted by the spring. By Newton’s third law, the external force discussed above is
the negative of the spring force.
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r
dr

dA = C dr

Figure 15: Breaking down a circle into rings.
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Quantity Symbol Expression
Distance fallen y 1

2gt
2

Spring energy U 1
2kx

2

Kinetic energy K 1
2mv

2

Circular area A 1
2τr

2

Table 3: Some common quadratic forms.

As seen in Figure 15, the area of a circle can be calculated by
breaking it down into circular rings of length C and width dr, where
the area of each ring is C dr:

dA = C dr.

Now, the circumference of a circle is proportional to its radius:

C ∝ r.

The constant of proportionality is τ :

C = τr.

The area of the circle is then the integral over all rings:

A =

∫
dA =

∫ r

0
C dr =

∫ r

0
τr dr = 1

2τr
2. (14)

If you were still a π partisan at the beginning of this section, your
head has now exploded. For we see that even in this case, where π
supposedly shines, in fact there is a missing factor of 2. Indeed, the
original proof by Archimedes shows not that the area of a circle is
πr2, but that it is equal to the area of a right triangle with base C and
height r. Applying the formula for triangular area then gives

A = 1
2bh = 1

2Cr =
1
2τr

2.

There is simply no avoiding that factor of a half (Table 3).
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3.2.1 Quod erat demonstrandum

We set out in this manifesto to show that τ is the true circle constant.
Since the formula for circular area was just about the last, best argu-
ment that π had going for it, I’m going to go out on a limb here and
say: Q.E.D.

4 Conflict and resistance
Despite the definitive demonstration of the superiority of τ , there are
nevertheless many who oppose it, both as notation and as number. In
this section, we address the concerns of those who accept the value but
not the letter. We then rebut some of the many arguments marshaled
againstC/r itself, including the so-called “Pi Manifesto” that defends
the primacy of π.

4.1 One turn
The true test of any notation is usage; having seen τ used throughout
this manifesto, you may already be convinced that it serves its role
well. But for a constant as fundamental as τ it would be nice to have
some deeper reasons for our choice. Why not α, for example, or ω?
What’s so great about τ?

There are two main reasons to use τ for the circle constant. The
first is that τ visually resembles π: after centuries of use, the associ-
ation of π with the circle constant is unavoidable, and using τ feeds
on this association instead of fighting it. (Indeed, the horizontal line
in each letter suggests that we interpret the “legs” as denominators, so
that π has two legs in its denominator, while τ has only one. Seen this
way, the relationship τ = 2π is perfectly natural.)10

The second reason is that τ corresponds to one turn of a circle, and
you may have noticed that “τ” and “turn” both start with a “t” sound.
This was the original motivation for the choice of τ , and it is not a
coincidence: the root of the English word “turn” is the Greek word

10Thanks to Tau Manifesto reader Jim Porter for pointing out this interpretation.
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τόρνος (tornos), which means “lathe”. Using a math font for the first
letter in τόρνος then gives us: τ .

Since the original launch of The Tau Manifesto, I have learned that
Peter Harremoës independently proposed using τ to “π IsWrong!” au-
thor Bob Palais in 2010, John Fisher proposed τ in a Usenet post in
2004, and Joseph Lindenberg anticipated both the argument and the
symbol more than twenty years before!11 Dr. Harremoës in particular
has emphasized the importance of a point first made in Section 1.1:
using τ gives the circle constant a name. Since τ is an ordinary Greek
letter, people encountering it for the first time can pronounce it imme-
diately. Moreover, unlike calling the circle constant a “turn”, τ works
well in both written and spoken contexts. For example, saying that
a quarter circle has radian angle measure “one quarter turn” sounds
great, but “turn over four radians” sounds awkward, and “the area of a
circle is one-half turn r squared” sounds downright odd. Using τ , we
can say “tau over four radians” and “the area of a circle is one-half tau
r squared.”

4.1.1 Ambiguous notation

Of course, with any new notation there is the potential for conflict with
present usage. As noted in Section 1.1, “π IsWrong!” avoids this prob-
lem by introducing a new symbol (Figure 3). There is precedent for
this; for example, in the early days of quantummechanics Max Planck
introduced the constant h, which relates a light particle’s energy to its
frequency (through E = hν), but physicists soon realized that it is of-
ten more convenient to useh̄ (read “h-bar”)—whereh̄ is just h divided
by… um… 2π—and this usage is now standard.

But getting a new symbol accepted is difficult: it has to be given a
name, that name has to be popularized, and the symbol itself has to be
added to word processing and typesetting systems. Using an existing
symbol allows us to route around the mathematical establishment.12

11Lindenberg has included both his original typewritten manuscript and a large
number of other arguments at his site Tau Before It Was Cool (https://sites.google.-
com/site/taubeforeitwascool/).

12Perhaps someday academic mathematicians will come to a consensus on a dif-
ferent symbol for the number 2π; if that ever happens, I reserve the right to support
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Rather than advocating a new symbol, The Tau Manifesto opts for
the use of an existing Greek letter. As a result, since τ is already used
in some current contexts, we must address the conflicts with existing
practice. Fortunately, there are surprisingly few common uses. More-
over, while τ is used for certain specific variables—e.g., shear stress
in mechanical engineering, torque in rotational mechanics, and proper
time in special and general relativity—there is no universal conflicting
usage.13 In the specific cases mentioned, we can either tolerate ambi-
guity or route around the few present conflicts by selectively changing
notation, such as using N for torque,14 τp for proper time, or even τ⊙
or τ for the circle constant itself.

Despite these arguments, potential usage conflicts have proven to
be the greatest source of resistance to τ . Some correspondents have
even flatly denied that τ (or, presumably, any other currently used
symbol) could possibly overcome these issues. But scientists and en-
gineers have a high tolerance for notational ambiguity, and claiming
that τ -the-circle-constant can’t coexist with other uses ignores consid-
erable evidence to the contrary.

One example of such easily tolerated ambiguity occurs in quantum
mechanics, where we encounter the following formula for the Bohr
radius, which (roughly speaking) is the “size” of a hydrogen atom in
its lowest energy state (the ground state):

a0 =
h̄2

me2
, (15)

where m is the mass of an electron and e is its charge. Meanwhile,
the ground state itself is described by a quantity known as the wave
function, which falls off exponentially with radius on a length scale
their proposed notation. But they have had over 300 years to fix this π problem, so I
wouldn’t hold my breath.

13The only possible exception to this is the golden ratio, which is often denoted by
τ in Europe. But not only is there an existing common alternative to this notation—
namely, the Greek letter φ (phi)—this usage shows that there is precedent for using
τ to denote a fundamental mathematical constant.

14This alternative for torque is already in use; see, for example, Classical Mechan-
ics (3rd edition) by Goldstein, Poole, and Safko, p. 2, and Introduction to Electrody-
namics (4th edition) by David Griffiths, pp. 170–171.
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set by the Bohr radius:

ψ(r) = N e−r/a0 , (16)

where N is a normalization constant.
Have you noticed the problem yet? Probably not, which is just the

point. The “problem” is that the e in Eq. (15) and the e in Eq. (16)
are not the same e—the first is the charge on an electron, while the
second is Euler’s number (the base of natural logarithms). In fact, if
we expand the factor of a0 in the argument of the exponent in Eq. (16),
we get

ψ(r) = N e−me2r/h̄2

,

which has an e raised the power of something with e in it. It’s even
worse than it looks, because N itself contains e as well:

ψ(r) =

√
1

πa30
e−r/a0 =

m3/2e3

π1/2h̄3
e−me2r/h̄2

.

I have no doubt that if a separate notation for Euler’s number did
not already exist, anyone proposing the letter e would be told it’s im-
possible because of the conflicts with other uses. And yet, in prac-
tice no one ever has any problem with using e in both contexts above.
There are many other examples, including situations where even π is
used for two different things.15 It’s hard to see how using τ for multi-
ple quantities is any different.

By the way, the π-pedants out there (and there have proven to be
many) might note that hydrogen’s ground-state wave function has a
factor of π:

ψ(r) =

√
1

πa30
e−r/a0 .

At first glance, this appears to be more natural than the version with τ :

ψ(r) =

√
2

τa30
e−r/a0 .

15See, for instance, An Introduction to Quantum Field Theory by Peskin and
Schroeder, where π is used to denote both the circle constant and a “conjugate mo-
mentum” on the very same page (p. 282).
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As usual, appearances are deceiving: the value of N comes from the
product

1√
2π

1√
2

2

a
3/2
0

,

which shows that the circle constant enters the calculation through
1/
√
2π, i.e., 1/√τ . As with the formula for circular area, the can-

cellation to leave a bare π is a coincidence.

4.2 The Pi Manifesto
Although most objections to τ come from scattered email correspon-
dence and miscellaneous comments on the Web, there is also an orga-
nized resistance. In particular, after the publication of The Tau Mani-
festo in June 2010, a “Pi Manifesto” appeared to make the case for the
traditional circle constant. This section and the two after it contain a
rebuttal of its arguments.16 Of necessity, this treatment is terser and
more advanced than the rest of the manifesto, but even a cursory read-
ing of what follows will give an impression of the weakness of the Pi
Manifesto’s case.

While we can certainly consider the appearance of the Pi Mani-
festo a good sign of continuing interest in this subject, it makes several
false claims. For example, it says that the factor of 2π in the Gaussian
(normal) distribution is a coincidence, and that it can more naturally
be written as

1
√
π(
√
2σ)

e
−x2

(
√
2σ)2 .

This is wrong: the factor of 2π comes from squaring the unnormalized
Gaussian distribution and switching to polar coordinates, which leads
to a factor of 1 from the radial integral and a 2π from the angular
integral. As in the case of circular area, the factor of π comes from
1/2× 2π, not from π alone.

A related claim is that the gamma function evaluated at 1/2 is more
natural in terms of π:

Γ(12) =
√
π,

16The original Pi Manifesto has been removed (perhaps my rebuttal was a bit too
effective?), so the link is now to an archived version (https://archive.md/VnJ2x).
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where
Γ(p) =

∫ ∞

0
xp−1e−x dx. (17)

But Γ(12) reduces to the same Gaussian integral as in the normal distri-
bution (upon setting u = x1/2), so the π in this case is really 1/2×2π
as well. Indeed, in many of the cases cited in the Pi Manifesto, the cir-
cle constant enters through an integral over all angles, i.e., as θ ranges
from 0 to τ .

The PiManifesto also examines some formulas for regular n-sided
polygons (or “n-gons”). For instance, it notes that the sum of the in-
ternal angles of an n-gon is given by

n∑
i=1

θi = (n− 2)π.

This issue was dealt with in “π Is Wrong!”, which notes the following:
“The sum of the interior angles [of a triangle] is π, granted. But the
sum of the exterior angles of any polygon, from which the sum of
the interior angles can easily be derived, and which generalizes to the
integral of the curvature of a simple closed curve, is 2π.” In addition,
the Pi Manifesto offers the formula for the area of an n-gon with unit
radius (the distance from center to vertex),

A = n sin π
n
cos π

n
,

calling it “clearly… another win for π.” But using the double-angle
identity sin θ cos θ = 1

2 sin 2θ shows that this can be written as

A = n/2 sin 2π

n
,

which is just
A =

1

2
n sin τ

n
. (18)

In other words, the area of an n-gon has a natural factor of 1/2. In fact,
taking the limit of Eq. (18) as n→ ∞ (and applying L’Hôpital’s rule)
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gives the area of a unit regular polygon with infinitely many sides, i.e.,
a unit circle:

A = lim
n→∞

1

2
n sin τ

n

=
1

2
lim
n→∞

sin τ
n

1/n

= 1
2τ.

(19)

In this context, we should note that the Pi Manifesto makes much
ado about π being the area of a unit disk, so that (for example) the area
of a quarter (unit) circle is π/4. This, it is claimed, makes just as good
a case for π as radian angle measure does for τ . Unfortunately for
this argument, as noted in Section 3 and as seen again in Eq. (19), the
factor of 1/2 arises naturally in the context of circular area. Indeed,
the formula for the area of a circular sector subtended by angle θ is

A(r, θ) = 1
2θr

2, (20)

so there’s no way to avoid the factor of 1/2 in general. (We thus see
that A = 1

2τr
2 is simply the special case θ = τ .)

In short, the difference between angle measure and area isn’t arbi-
trary. There is no natural factor of 1/2 in the case of angle measure.
In contrast, in the case of area the factor of 1/2 arises through the in-
tegral of a linear function in association with a simple quadratic form.
In fact, the case for π is even worse than it looks, as shown in the next
section.

5 Getting to the bottom of pi and tau
It is time now to determine exactly what is wrong with π. The ar-
gument hinges on an analysis of the surface areas and volumes of n-
dimensional spheres and balls, which makes clear that π as typically
defined doesn’t have any fundamental geometric significance. Inter-
estingly, en route to a better understanding of the geometric meaning
of τ , we will also uncover a surprising new constant that is also of
significance to our story.
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The resulting section is more advanced than the rest of this man-
ifesto and can be skipped without loss of continuity; if you find it
confusing, I recommend proceeding directly to the conclusion in Sec-
tion 6. But if you’re up for a mathematical challenge, you are invited
to proceed…

5.1 Surface areas and volumes in n dimensions
We start our investigation with the generalization of circles and circu-
lar disks to arbitrary dimensions. These objects are known as hyper-
spheres or n-spheres (the generalization of circles) and solid spheres
or n-balls (the generalization of circular disks). They can be defined
for all natural numbers as follows.

A 0-sphere is the set of all points satisfying

x2 = r2,

which consists of the two points ±r. These points form the boundary
of a (closed) 1-ball, which is the set of all points satisfying

x2 ≤ r2.

This is a line segment from −r to r; equivalently, it is the closed in-
terval [−r, r].

A 1-sphere is a circle, which is the set of all points satisfying

x2 + y2 = r2.

This figure forms the boundary of a 2-ball, which is the set of all points
satisfying

x2 + y2 ≤ r2.

This is a closed disk of radius r. Similarly, a 2-sphere (also called
simply a “sphere”) is the set of all points satisfying

x2 + y2 + z2 = r2.

This is the boundary of a 3-ball (somewhat confusingly, also often
called a “sphere”), which is the set of all points satisfying

x2 + y2 + z2 ≤ r2.
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The generalization to arbitrary dimension n, although difficult to
visualize for n > 3, is straightforward: an (n− 1)-sphere is the set of
all points satisfying

n∑
i=1

x2i = r2,

which forms the boundary of the corresponding n-ball, defined as the
set of all points satisfying

n∑
i=1

x2i ≤ r2.

The “volume of a hypersphere (or n-sphere)” of dimension n − 1 is
then defined as the volume Vn(r) of the corresponding n-dimensional
ball. It can be obtained by integrating the surface areaAn−1(r) at each
radius via Vn(r) =

∫
An−1(r) dr.

The subscripts on Vn and An−1 are chosen so that they always
agreewith the dimensionality of the corresponding geometric object;17
for example, the case n = 2 corresponds to a disk (dimensionality 2)
and a circle (dimensionality 2 − 1 = 1). Then V2 is the “volume”
of a 2-ball (i.e., the area of a disk, colloquially known as the “area of
a circle”), and A2−1 = A1 is the “surface area” of a 1-sphere (i.e.,
the circumference of a circle). When in doubt, simply recall that n
always refers to the dimensionality of the ball, with n− 1 referring to
the dimensionality of its boundary.

Now, The Pi Manifesto (discussed in Section 4.2) includes a for-
mula for the volume of a unit n-ball as an argument in favor of π:

√
π
n

Γ(1 + n
2 )
, (21)

where the gamma function is given by Eq. (17). Eq. (21) is a special
case of the formula for general radius, which is also typically written
in terms of π:

Vn(r) =
πn/2rn

Γ(1 + n
2 )
. (22)

17This choice of notation is fairly standard; e.g., as of this writing it is the conven-
tion used in the Wikipedia article on the volume of an n-ball.
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Because Vn(r) =
∫
An−1(r) dr, we have An−1(r) = dVn(r)/dr,

which means that the surface area can be written as follows:

An−1(r) =
nπn/2rn−1

Γ(1 + n
2 )

. (23)

Rather than simply take these formulas at face value, let’s see if we
can untangle them to shed more light on the question of π vs. τ . We
begin our analysis by noting that the apparent simplicity of the above
formulas is an illusion: although the gamma function is notationally
simple, in fact it is an integral over a semi-infinite domain, which is not
a simple idea at all. Fortunately, the gamma function can be simplified
in certain special cases. For example, when n is an integer, we can
show (using integration by parts) that

Γ(n) = (n− 1)(n− 2) . . . 2 · 1 = (n− 1)!

Seen this way, Γ(x) can be interpreted as a generalization of the fac-
torial function to real-valued arguments.18

In the n-dimensional surface area and volume formulas, the argu-
ment of Γ is not necessarily an integer, but rather is

(
1 + n

2

)
, which

is an integer when n is even and is a half -integer when n is odd. Tak-
ing this into account gives the following expression, which is adapted
from a standard reference, Wolfram MathWorld, and as usual is writ-
ten in terms of π:

An−1(r) =



2πn/2 rn−1

(12n− 1)!
n even;

2(n+1)/2π(n−1)/2 rn−1

(n− 2)!!
n odd.

(24)

(Here we write An−1 where MathWorld uses Sn.) Integrating with
18Indeed, the generalization to complex-valued arguments is straightforward: just

replace real x with complex z in Eq. (17).
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respect to r then gives

Vn(r) =


πn/2 rn

(n2 )!
n even;

2(n+1)/2π(n−1)/2 rn

n!!
n odd.

(25)

Let’s examine Eq. (25) in more detail. Notice first that MathWorld
uses the double factorial function n!!—but, strangely, it uses it only in
the odd case. (This is a hint of things to come.) The double factorial
function, although rarely encountered in mathematics, is elementary:
it’s like the normal factorial function, but involves subtracting 2 at a
time instead of 1, so that, e.g., 5!! = 5 · 3 · 1 and 6!! = 6 · 4 · 2. In
general, we have

n!! =


n(n− 2) . . . 6 · 4 · 2 n even;

n(n− 2) . . . 5 · 3 · 1 n odd.
(26)

(By definition, 0!! = 1!! = 1.) Note that Eq. (26) naturally divides
into even and odd cases, making MathWorld’s decision to use it only
in the odd case still more mysterious.

To solve this mystery, we’ll start by taking a closer look at the
formula for odd n in Eq. (25):

2(n+1)/2π(n−1)/2 rn

n!!

Upon examining the expression

2(n+1)/2π(n−1)/2,

we notice that it can be rewritten as

2(2π)(n−1)/2,

and here we recognize our old friend 2π.
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Now let’s look at the even case in Eq. (25). We noted above how
strange it is to use the ordinary factorial in the even case but the dou-
ble factorial in the odd case. Indeed, because the double factorial is
already defined piecewise, if we unified the formulas by using n!! in
both cases we could pull it out as a common factor:

Vn(r) =
1

n!!
×


. . . n even;

. . . n odd.

So, is there any connection between the factorial and the double fac-
torial? Yes—when n is even, the two are related by the following
identity: (n

2

)
! =

n!!

2n/2
(n even).

(This can be verified using mathematical induction.) Substituting this
into the volume formula for even n in Eq. (25) then yields

2n/2πn/2 rn

n!!
,

which bears a striking resemblance to

(2π)n/2 rn

n!!
,

and again we find a factor of 2π.
Putting these results together and setting τ = 2π, we see that

Eq. (25) can be rewritten as

Vn(r) =


τn/2 rn

n!!
n even;

2τ (n−1)/2 rn

n!!
n odd.

(27)

Eq. (27) is definitely an improvement on Eq. (22). Like Eq. (22),
Eq. (27) depends explicitly on the parity of the dimension (i.e., whe-
ther n is even or odd), but unlike the faux simplicity of Eq. (22), which
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hides a huge amount of complexity in theΓ function, Eq. (27) involves
no fancy integrals—just the slightly exotic but nevertheless elemen-
tary double-factorial function.

Eq. (27) appears to be yet another argument in favor of τ—but,
in a surprise twist, it turns out we can do even better by exploiting
the natural symmetry of n-dimensional balls. We start by observing
that a ball in n dimensions divides naturally into 2n congruent pieces,
corresponding to the 2n families of solutions to

∑n
i=1 x

2
i = r2 (one

for each choice of ±xi): in two dimensions, they are the four quad-
rants; in three dimensions, they are the eight octants; and so on in
higher dimensions. Moreover, each congruent piece is effectively a
copy of the solution to

∑n
i=1 x

2
i = r2 when all coordinates are pos-

itive (i.e., xi > 0 for all i), corresponding to the first quadrant, the
first octant, etc. The other pieces can be generated by rotating the
first piece through an integer multiple of the angle between coordinate
axes, namely, a right angle.

We thus see that the volume of an n-dimensional sphere is simply
the volume of the first congruent piece multiplied by the number of
such pieces, which is 2n. (Indeed, many derivations of the area of a
circle do exactly this, calculating the area of the first quadrant and then
multiplying by 22 = 4.) This suggests rewriting each case in Eq. (27)
as

Vn(r) = 2n × volume of first congruent piece. (28)
Looking at the even case in Eq. (27), we see that pulling out a

factor of 2n leaves us with a formula in terms of a power of τ/22:

Vn(r) =
τn/2 rn

n!!
Eq. (27) (even case)

=
2n (τn/2/2n) rn

n!!
Multiply & divide by 2n

=
2n (τn/2/(22)n/2) rn

n!!
Unify exponent

= 2n
(τ/22)n/2

n!!
rn. ac/bc = (a/b)c

One might reasonably wonder whether this is really worth the trouble,
but amazingly the same trick works in the odd case as well. We see
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from Eq. (27) that there is already a factor of 2 in the odd case, so we
need only factor out a 2n−1 to get an overall factor of 2n:

Vn(r) =
2τ (n−1)/2 rn

n!!
Eq. (27) (odd case)

=
2 · 2n−1(τ (n−1)/2/2n−1) rn

n!!
Multiply & divide by 2n−1

=
2n(τ (n−1)/2/(22)(n−1)/2) rn

n!!
Unify exponent

= 2n
(τ/22)(n−1)/2

n!!
rn. ac/bc = (a/b)c

Note that the extra factor of 2 in the odd case was exactly what
we needed to get a power of the same constant as in the even case,
namely, τ/22. Thus, we see that τ/22 plays a central role in the for-
mula for the volume of an n-ball, and indeed it is special: as noted
above, it is precisely the measure of the angle between any two axes
in n-dimensional space—that is, it’s the measure of a right angle. For
convenience, let’s call this quantity λ (lambda), chosen because the
Greek letter itself looks a little like a right angle:

λ =
τ

22
=
τ

4
. measure of a right angle (29)

Substituting λ for τ/22 in the volume formulas then gives

Vn(r) =


2n
λn/2

n!!
rn n even;

2n
λ(n−1)/2

n!!
rn n odd.

(30)

Finally, note that, as n increases, the exponents on λ increase with
period 2:19 λ, λ, λ2, λ2, λ3, λ3, . . . If you’ve ever played around with
the floor function, you might recognize this pattern: it’s just the floor
of the half integers n/2 for n ≥ 2. We can see this by noting that
the floor of x, written ⌊x⌋, is simply the largest integer less than or

19For convenience, we omit the value n = 1 corresponding to a 1-ball (line seg-
ment), though it’s worth noting that Eq. (30) works even in this degenerate case.
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equal to x, which for positive numbers is equivalent to chopping off
the fractional part (so that, e.g., ⌊3.7⌋ = ⌊3.2⌋ = 3). The floor of half
integers for n = 2, 3, . . . then appears as follows:⌊

2
2

⌋
= 1,

⌊
3
2

⌋
= 1,

⌊
4
2

⌋
= 2,

⌊
5
2

⌋
= 2,

⌊
6
2

⌋
= 3,

⌊
7
2

⌋
= 3, . . .

We see that this is exactly the same pattern as in the powers of λ. In
general, for positive integer k we have⌊n

2

⌋
=

⌊
2k

2

⌋
= ⌊k⌋ = k =

n

2
n even

and⌊n
2

⌋
=

⌊
2k + 1

2

⌋
=

⌊
2k

2
+

1

2

⌋
= ⌊k⌋ = k =

n− 1

2
n odd.

In other words, we have

⌊n
2

⌋
=


n

2
n even;

n− 1

2
n odd,

which precisely matches the exponents in the even and odd cases of
Eq. (30). This means that we can rewrite Eq. (30) as

Vn(r) =


2n
λ⌊

n
2 ⌋

n!!
rn n even;

2n
λ⌊

n
2 ⌋

n!!
rn n odd.

(31)

At this point, we see that something astonishing has happened:
the expressions in the even and odd cases of Eq. (31) are now identi-
cal! In the process of expressing the volume in terms of the 2n con-
gruent pieces of an n-ball, the double-factorial function n!!, and the
floor function ⌊n/2⌋, we have completely eliminated the explicit de-
pendence on parity. This means that we can write the volume of an
n-dimensional ball as

Vn(r) = 2n
λ⌊

n
2 ⌋

n!!
rn, (32)
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without breaking it into explicit even and odd cases.20 The corre-
sponding surface-area formula then follows by differentiating Eq. (32)
with respect to r and applying the relation n!! = n(n− 2)!!:

An−1(r) = 2n
λ⌊

n
2 ⌋

(n− 2)!!
rn−1. (33)

The formula Eq. (32) is the product of three terms, two of which
are conceptually quite simple. We saw in Eq. (28) that the factor of
2n is the result of the number of congruent pieces into which an n-
ball naturally divides. The factor of rn, meanwhile, is required by
dimensional analysis: the volume should have units of (length)n, and
the only length scale in the system is the radius. Based purely on these
considerations, we could infer that the volume of an n-ball must have
the form

Vn(r) = 2n f(n) rn,

where f(n) is a pure number that is some function of n. The analysis
above shows that this function is f(n) = λ⌊n/2⌋/n!!, yielding Eq. (32).

Considering the case of a unit n-ball by setting r = 1, we get

Vn(1) = 2n
λ⌊

n
2 ⌋

n!!
.

Thus, we see that λ⌊n/2⌋/n!! can be interpreted geometrically as the
volume of the first congruent piece of a unit n-ball (e.g., the first
quadrant, octant, etc.). Multiplying λ⌊n/2⌋/n!! by 2n gives the vol-
ume of the full unit n-ball; multiplying again by rn gives the volume
for general radius r. Similar considerations apply to Eq. (33), with
the first congruent piece of a unit (n − 1)-sphere having surface area
λ⌊n/2⌋/(n− 2)!!. Multiplying by the same factor of 2n and the power
of r required by dimensional analysis (i.e., rn−1) then gives the gen-
eral form.

To my knowledge, Eq. (32) and Eq. (33) are the most compact
expressions for the spherical volumes and surface areas in terms of

20Thanks to tau correspondent Jeff Cornell for bringing this remarkable simplifi-
cation to my attention.
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elementary functions and fundamental constants. In the case of n = 2,
they reduce to

V2 = 22
λ⌊

2
2⌋

2!!
r2 =

1

2
22λr2 =

1

2
τr2

and

A1 = 22
λ⌊

2
2⌋

0!!
r = 22λr = τr,

where we have used the relation τ = 22 λ. As required, these are
simply the usual area (two-dimensional “volume”) and circumference
(one-dimensional “surface area”) of a disk and circle, respectively.

5.2 Three families of constants
Equipped with the tools developed in Section 5.1, we’re now ready
to get to the bottom of π and τ . To complete the excavation, we’ll
use Eq. (33) and Eq. (32) to define two families of constants, and then
use the definition of π (Eq. (1)) to define a third such family, thereby
revealing exactly what is wrong with π.

We saw in Section 5.1 that the most natural constant in the context
ofn-dimensional surface areas and volumes isλ, themeasure of a right
angle, rather than τ . Where then does that leave us with respect to the
latter? Why is τ important? The answer is that τ is by far the most
important member of what we’ll refer to as “surface-area constants”.

We can define this family of constants, which we’ll call τn−1, by
dividing Eq. (33) by rn−1, the power of r needed to yield a dimen-
sionless constant for each value of n:

τn−1 ≡
An−1(r)

rn−1
= 2n

λ⌊
n
2 ⌋

(n− 2)!!
. (34)

Second, we’ll define a family of “volume constants” vn by dividing
the volume formula Eq. (32) by rn, again yielding a dimensionless
constant for each value of n:

vn ≡ Vn(r)

rn
= 2n

λ⌊
n
2 ⌋

n!!
. (35)

42



With the two families of constants defined in Eq. (34) and Eq. (35), we
can write the surface area and volume formulas (Eq. (33) and Eq. (32))
compactly as follows:

An−1(r) = τn−1 r
n−1 (36)

and
Vn(r) = vn r

n. (37)
Because of the relation Vn(r) =

∫
An−1(r) dr, we have the simple

relationship
vn =

τn−1

n
. (38)

Thus, when discussing n-dimensional volumes, it is natural to use
Eq. (38) to write the volume constants vn in terms of the surface-area
constants τn−1. Combining Eq. (38) with Eq. (37) gives

Vn(r) =
1

n
τn−1r

n,

which is the generalization of 1
2τr

2 (Eq. (14)) to n dimensions.
Let us make some observations about these two families of con-

stants. The family τn−1 has an important geometric meaning: by set-
ting r = 1 in Eq. (34), we see that each τn−1 is the surface area of a
unit (n− 1)-sphere, which is also the angle measure of a full (n− 1)-
sphere. In particular, by writing sn−1(r) as the (n − 1)-dimensional
“arc length” equal to a fraction f of the full surface area An−1(r), we
have the exact analogue of Eq. (5) in n dimensions:

θn−1 ≡
sn−1(r)

rn−1
=
fAn−1(r)

rn−1
= f

(
An−1(r)

rn−1

)
= fτn−1. (39)

Here θn−1 is then-dimensional generalization of radian angle measure
(where as usual n refers to the dimensionality of the corresponding
ball), and we see that τn−1 is the generalization of “one turn” to n
dimensions. In the important special case n = 2, we have the 1-sphere
or circle constant τ2−1 = τ1 = τ , leading to the diagram shown in
Figure 10.
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Meanwhile, the vn are the volumes of unit n-balls. In particular,
v2 is the area of a unit disk:

v2 =
τ1
2

=
τ

2
. (40)

This shows that v2 = τ/2 = 3.14159 . . . does have an independent
geometric significance. Note, however, that it has nothing to do with
circumferences or diameters. In other words, π = C/D is not a mem-
ber of the family vn.

So, to which family of constants does π naturally belong? Let’s
rewrite Eq. (1) in terms more appropriate for generalization to higher
dimensions:

π =
C

D
=

A1

D2−1
.

We thus see that π is naturally associated with surface areas divided by
the power of the diameter necessary to yield a dimensionless constant.
This suggests introducing a third family of constants πn−1:

πn−1 ≡
An−1(r)

Dn−1
. (41)

We can express this in terms of the family τn−1 by substitutingD = 2r
in Eq. (41) and applying Eq. (34):

πn−1 =
An−1(r)

Dn−1
=
An−1(r)

(2r)n−1
=

An−1(r)

2n−1rn−1
=
τn−1

2n−1
.

We are now finally in a position to understand exactly what is
wrong with π. The principal geometric significance of 3.14159 . . . is
that it is the area of a unit disk. But this number comes from evaluating
vn = τn−1/n when n = 2:

v2 =
τ1
2

=
τ

2
.

It’s true that this happens to equal π1:

π1 = π =
τ1

22−1
=
τ

2
.

But this equality is a coincidence: it occurs only because 2n−1 happens
to equal n when n = 2 (that is, 22−1 = 2). In all higher dimensions,
n and 2n−1 are distinct. In other words, the geometric significance of
π is the result of a mathematical pun.
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6 Conclusion
Over the years, I have heard many arguments against the wrongness of
π and against the rightness of τ , so before concluding our discussion
allow me to answer some of the most frequently asked questions.

6.1 Frequently Asked Questions
• Are you serious?
Of course. I mean, I’m having fun with this, and the tone is oc-
casionally lighthearted, but there is a serious purpose. Setting
the circle constant equal to the circumference over the diame-
ter is an awkward and confusing convention. Although I would
love to see mathematicians change their ways, I’m not partic-
ularly worried about them; they can take care of themselves.
It is the neophytes I am most worried about, for they take the
brunt of the damage: as noted in Section 2.1, π is a pedagogical
disaster. Try explaining to a twelve-year-old (or to a thirty-year-
old) why the angle measure for an eighth of a circle—one slice
of pizza—is π/8. Wait, I meant π/4. See what I mean? It’s
madness—sheer, unadulterated madness.

• How can we switch from π to τ?
The next time you write something that uses the circle constant,
simply say “For convenience, we set τ = 2π”, and then proceed
as usual. (Of course, this might just prompt the question, “Why
would you want to do that?”, and I admit it would be nice to
have a place to point them to. If only someone would write,
say, a manifesto on the subject…) The way to get people to start
using τ is to start using it yourself.

• Isn’t it too late to switch? Wouldn’t all the textbooks and
math papers need to be rewritten?
No on both counts. It is true that some conventions, though un-
fortunate, are effectively irreversible. For example, Benjamin
Franklin’s choice for the signs of electric charges leads to the
most familiar example of electric current (namely, free elec-
trons in metals) being positive when the charge carriers are neg-
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ative, and vice versa—thereby cursing beginning physics stu-
dents with confusing negative signs ever since.21 To change
this convention would require rewriting all the textbooks (and
burning the old ones) since it is impossible to tell at a glance
which convention is being used. In contrast, while redefining π
is effectively impossible, we can switch from π to τ on the fly
by using the conversion

π ↔ 1
2τ.

It’s purely a matter of mechanical substitution, completely ro-
bust and indeed fully reversible. The switch from π to τ can
therefore happen incrementally; unlike a redefinition, it need
not happen all at once.

• Won’t using τ confuse people, especially students?
If you are smart enough to understand radian anglemeasure, you
are smart enough to understand τ—and why τ is actually less
confusing than π. Also, there is nothing intrinsically confus-
ing about saying “Let τ = 2π”; understood narrowly, it’s just a
simple substitution. Finally, we can embrace the situation as a
teaching opportunity: the idea that π might be wrong is interest-
ing, and students can engage with the material by converting the
equations in their textbooks from π to τ to see for themselves
which choice is better.

• Does any of this really matter?
Of course it matters. The circle constant is important. People
care enough about it to write entire books on the subject, to cel-
ebrate it on a particular day each year, and to memorize tens of
thousands of its digits. I care enough to write a whole mani-
festo, and you care enough to read it. It’s precisely because it
does matter that it’s hard to admit that the present convention
is wrong. Since the circle constant is important, it’s important
to get it right, and we have seen in this manifesto that the right

21The sign of the charge carriers couldn’t be determined with the technology of
Franklin’s time, so this isn’t his fault. It’s just bad luck.
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number is τ . Although π is of great historical importance, the
mathematical significance of π is that it is one-half τ .

• Why did anyone ever use π in the first place?
The origins of π-the-number are probably lost in the mists of
time. I suspect that the convention of using C/D instead of
C/r arose simply because it is easier tomeasure the diameter of
a circular object than it is to measure its radius. But that doesn’t
make it good mathematics, and I’m surprised that Archimedes,
who famously approximated the circle constant, didn’t realize
that C/r is the more fundamental number. As notation, π was
popularized around 300 years ago by Leonhard Euler, based on
the work of William Jones. For example, in his hugely influen-
tial two-volume work Introductio in analysin infinitorum, Euler
uses π to denote the semicircumference (half-circumference) of
a unit circle or the measure of a 180◦ arc.22 Unfortunately, Euler
doesn’t explain why he introduces this factor of 1/2, though it
may be related to the occasional importance of the semiperime-
ter of a polygon. In any case, he immediately notes that sine and
cosine have periodicity 2π, so he was certainly in a position to
see that he was measuring angles in terms of twice the period of
the circle functions, making his choice all the more perplexing.
He almost got it right, though: somewhat incredibly, Euler ac-
tually used the symbol π to mean both 3.14 . . . and 6.28 . . . at
different times!23 What a shame that he didn’t standardize on
the more convenient convention.

• What is the strongest argument in favor of π?

22“…pro quo numero, brevitatis ergo, scribam π, ita ut sit π = Semicircumfer-
entiae Circuli, cujus Radius = 1, seu π erit longitudo Arcus 180 graduum.” “…for
which number, because of brevity, I may write π, so that π may be the equal of the
semicircumference of a circle, whose radius equals 1, or π will be the length of an arc
of 180 degrees.” Euler, Leonhard, Introductio in analysin infinitorum (1748), Vol-
ume 1, Chapter VIII, p. 93. https://scholarlycommons.pacific.edu/euler-works/101.
Both definitions are equivalent toC/D sinceD = 2 when r = 1 and 180◦ is 1

2
C/r.

23For instance, in his 1727 Essay Explaining the Properties of Air, Euler writes:
“Sumatur pro ratione radii ad peripheriem, I : π…”, “It is taken for the ratio of the
radius to the periphery [circumference], 1 : π…”
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The strongest argument in favor of the number 3.14 . . . is that
it is the area of a unit disk, though we saw in Section 5.2 that
the equality between this constant and the number C/D is a co-
incidence. As for π proper, thinking in terms of C/D can be
convenient in certain applications, such as water pipes or agri-
cultural fields, where the diameter plays an especially important
role.

• What is the strongest argument against τ?

Based on Eq. (32) and Eq. (33), one might reasonably argue
that λ—which we could call the hypersphere constant—is the
more fundamental number. On the other hand, the choice n = 2
(1-spheres and 2-balls, i.e., “circles” broadly defined) is by far
the most important special case, with n = 3 (2-spheres and 3-
balls) running a distant second, and the importance of higher-
dimensional hyperspheres being negligible by comparison. It
thus makes sense to standardize on τ even if the general case is
arguably more natural in terms of λ. Indeed, the vast majority of
the time that λ enters mathematical expressions, it is via 22λ =
τ , so using λ in all cases would introduce factors of 22 = 4
everywhere, just as using π introduces factors of 2.
In any case, with respect to the circle constant that is the subject
of this manifesto, π is clearly a lost cause, and λ applies to more
naturally to general hyperspheres, so τ undoubtedly deserves
the name. As the legendary mathematician John Conway once
observed: “2π is obviously the correct constant!”

• Why does this subject interest you?
First, as a truth-seeker I care about correctness of explanation.
Second, as a teacher I care about clarity of exposition. Third,
as a hacker I love a nice hack. Fourth, as a student of history
and of human nature I find it fascinating that the absurdity of π
was lying in plain sight for centuries before anyone seemed to
notice. Moreover, many of the people whomissed the true circle
constant are among the most rational and intelligent people ever
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to live. What else might be staring us in the face, just waiting
for us to discover it?

• Are you like a crazy person?
That’s really none of your business, but no. Like everyone, I
do have my idiosyncrasies, but I am to all external appearances
normal in practically every way. You would never guess from
meeting me that, far from being an ordinary citizen, I am in fact
a notorious mathematical propagandist.

• But what about puns?
We come now to the final objection. I know, I know, “π in the
sky” is so very clever. And yet, τ itself is pregnant with possi-
bilities. τ ism tells us: it is not τ that is a piece of π, but π that
is a piece of τ—one-half τ , to be exact. The identity eiτ = 1
says: “Be one with the τ .” And though the observation that “A
rotation by one turn is 1” may sound like a τ -tology, it is the
true nature of the τ . As we contemplate this nature to seek the
way of the τ , we must remember that τ ism is based on reason,
not on faith: τ ists are never πous.

6.2 Embrace the tau
Wehave seen in The TauManifesto that the natural choice for the circle
constant is the ratio of a circle’s circumference not to its diameter, but
to its radius. This number needs a name, and I hope you will join me
in calling it τ :

circle constant = τ ≡ C

r
= 6.283185307179586 . . .

The usage is natural, the motivation is clear, and the implications are
profound. Plus, it comes with a really cool diagram (Figure 16). We
see in Figure 16 a movement through yang (“light, white, moving up”)
to τ/2 and a return through yin (“dark, black, moving down”) back
to τ .24 Using π instead of τ is like having yang without yin.

24The interpretations of yin and yang quoted here are from Zen Yoga: A Path to
Enlightenment through Breathing, Movement and Meditation by Aaron Hoopes.
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0, τ

Figure 16: Followers of τ ism seek the way of the τ .
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6.28 Tau Day
The Tau Manifesto first launched on Tau Day: June 28 (6/28), 2010.
Tau Day is a time to celebrate and rejoice in all things mathematical.25
If you would like to receive updates about τ , including notifications
about possible future Tau Day events, as well as posts on mathematics
and related subjects, please join the Tau Manifestomailing list.26 And
if you think that the circular baked goods on Pi Day are tasty, just
wait—Tau Day has twice as much pi(e)!
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